Robotics 1

Robotics 1

Trajectory planning

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA
AUTOMATICA E GESTIONALE ANTONIO RUBERTI

SAPIENZA

UNIVERSITA DI ROMA

Trajectory planner interfaces

functional robot units

l external sensors I'

task planner* trajectory planner* control*

* = programming “points”

internal sensors

robot action described

as a sequence of poses reference profile/values
or configurations ~ =) TmENCJ€§Y =) (continuous or discrete)

(with possible exchange for the robot controller
of contact forces)

Robotics 1 2

Trajectory definition
a standard procedure for industrial robots

1. define Cartesian pose points (position+orientation) using the teach-box

2. program an (average) velocity between these points, as a 0-100% of a
maximum system value (different for Cartesian- and joint-space motion)

3. linear interpolation in the joint space between points sampled from the
built trajectory

examples of additional features
a) over-fly A B b) sensor-driven STOP ¢) circular path
through 3 points
C

main drawbacks

m semi-manual programming (as in “first generation” robot languages)
m limited visualization of motion

> a mathematical formalization of trajectories is useful/needed

Robotics 1 3

Some typical trajectories

= Point-to-point Cartesian motion with an intermediate point

video video

Straight lines as Cartesian path Interpolation with Bezier curves

Robotics 1 4

Some typical trajectories

= Timing laws: Cartesian path with (dis-)continuous tangent

video video

Square path at constant speed Square path with
trapezoidal speed profile

Robotics 1 5

Joint and Cartesian trajectories

= assigned task: arm reconfiguration between two inverse
kinematic solutions associated to a given end-effector pose

= initial and final configuration

= same Cartesian pose (no change!):
the motion cannot be fully specified in
the Cartesian space

= to perform this task, the robot should
leave the given end-effector pose and

here N=m=6 then return to it

(8 IK solutions) = a self-motion could be sufficient

— if the robot starts in a singularity
— if there is (task) redundancy (m<n)

for “simple” manipulators (e.g., all industrial robots) and m=n, the execution
of these tasks will require the passage through a singular configuration

Robotics 1 6

= a reconfiguration task (or...

video

Joint and Cartesian trajectories

three-phase trajectory: single-phase trajectory

circular path + self-motion + linear path in the joint space (no stops)

Robotics 1

passing through singularity)

video

From task to trajectory

of motion p4(t)
TRAJECTORY
1 of interaction Fy(t)
GEOMETRIC PATH parameterized by s: p=p(s))
- (e.g., s is the arc length) L p(s(t))
TIMING LAW describes the time evolution of s=s(t) .

B | t TIME

I @ >
0 T
(] I > ® / >
A \ s) - Exgg y PARAMETER Sz,
- Yy

example: TASK planner provides A, B
TRAJECTORY planner generates p(t)

Robotics 1 8

Trajectory planning
operative seguence

@ " TASK planning

= Ssequence of pose points (“knots”) in Cartesian space -1
= interpolation in Cartesian space

Ir - Cartesian geometric path (position + orientation): p = p(s) -1
(SR = —" path sampling and kinematic inversion
-l; % @ \1 "o
© & W sequence of “knots” in joint space 1
G 2 ——" interpolation in joint space

™= . geometric path in joint space: g = g(})

additional issues to be considered in the planning process

= obstacle avoidance
= on-line/off-line computational load
= sequence @ is more “dense” than @

Robotics 1 9

Example

_..._B
A -~ I o \
V4 \\
/ p(s)
/ \
l I
/
9/ ds
N 7 qs(1)
~ — —-— - /
o ety
— — N
A B C A
Cartesian space joint space

Robotics 1 10

Trajectory classification

= Space of definition
= Cartesian, joint

= task type

= point-to-point (PTP), multiple points (knots), continuous,
concatenated

= path geometry
= rectilinear, polynomial, exponential, cycloid, ...
= timing law
= bang-bang in acceleration, trapezoidal in velocity, polynomial, ...

= coordinated or independent

= motion of all joints (or of all Cartesian components) start and
ends at the same instants (say, t=0 and t=T) = single timing law

or
= motions are timed independently (according to the requested
displacement and robot capabilities) — mostly only in joint space

Robotics 1 11

Path and timing law

= after choosing a path, the trajectory definition is completed by
the choice of a timing law
p=p(s) =s=5st) (Cartesian space)
g=q(n) =>ir=A1) (joint space)
= if s(t) = t, path parameterization is the natural one given by time

= the timing law

= iS chosen based on task specifications (stop in a point, move at
constant velocity, and so on)

= may consider optimality criteria (min transfer time, min energy,...)

= constraints are imposed by actuator capabilities (max torque, max
velocity,...) and/or by the task (e.g., max acceleration on payload)

note: on parameterized paths, a space-time decomposition takes place

e.g, inCartesian -\ _ dp. .. dp- . dPp s
space p(t) = gs S p(t) = s S+ 72 S

Robotics 1 12

Cartesian vs. joint trajectory planning SN

= planning in Cartesian space
= allows a more direct visualization of the generated path
= Obstacle avoidance, lack of “wandering”

= planning in joint space
= does not need on-line kinematic inversion

= issues in kinematic inversion

= g e q (or higher-order derivatives) may also be needed
= Cartesian task specifications involve the geometric path,
but also bounds on the associated timing law

= for redundant robots, choice among «o"™ inverse solutions,
based on optimality criteria or additional auxiliary tasks

= Off-line planning in advance is not always feasible

= e.g., when interaction with the environment occurs or
sensor-based motion is needed

Robotics 1 13

Relevant characteristics

= computational efficiency and memory space
= e.qg., store only the coefficients of a polynomial function
= predictability and accuracy
= VS. "wandering” out of the knots
= VS. "overshoot” on final position
= flexibility
= allowing concatenation of primitive segments
= over-fly
= continuity
= in space and/or in time
= at least €', but also up to jerk = third derivative in time

Robotics 1 14

video Jerk:'4007/s?

Robotics 1 15

Trajectory planning in joint space

= g =q(t) intime or g = q(1) in space (then with A = A(t))
= it is sufficient to work component-wise (g; in vector q)

= an implicit definition of the trajectory, by solving a problem with
specified boundary conditions in a given class of functions

= typical classes: polynomials (cubic, quintic,...), (co)sinusoids,
clothoids, ...

= imposed conditions
= passage through points = interpolation
= initial, final, intermediate velocity (or geometric tangent for paths)
= initial, final acceleration (or geometric curvature)
= continuity up to the k-th order time (or space) derivative: class Ck

many of the following methods and remarks can be
directly applied also to Cartesian trajectory planning (and vice versa)!

Robotics 1 16

Cubic polynomial in space

q(1l) =a; [9'(0) = vo|| 9’ (1) = v; | «— 4 conditions

q(0) = qq

q(A) = qp + Ag[ai3 + bA2 + ch + d] AQ = q; — o
~~ ~ - }\,6 [0,1]

4 coefficients —> “doubly normalized” polynomial qy(1)

gv1)=1< a+b+c=1

gv0)=0 < d=0
an'(1) = dgy/dr|, =y = 3a + 2b + ¢ = v4/AqQ

dn'(0) = dan/dA];—o = € = Vo/Aq
special case: vy = v; = 0 (zero tangent)
gy(0) =0 < c=0
qN(1)=1 <:>a+b=1 a=-2
<
N(1) =0 < 3a+2b=0

Robotics 1 17

Cubic polynomial in time

a(0) = g, [a(T) = gn |{9(0) = vin ||a(T) = Vsin | +— 4 conditions

AQ = Cfin = Gin
1) = Gn + Aq[at3 + b2 + c1 + d
() = an + Aq[a - ©= YT, e [0,1]

-~

4 coefficients —> “doubly normalized” polynomial qy(t)

gv0) =0 < d=0 gl)=1< a+b+c=1
dn'(0) = dgy/dt].-g = ¢ = viy T/Aq an'(1) = dan/dt|.=; = 3a + 2b + c = vg,T/AQ

special case: Vi, = Vi, = 0 (rest-to-rest)
gy(0) =0 < c=0

qN(1)=1 <:>a+b=1 a=-2
Yo
dv(1) =0 < 3a+2b=0

Robotics 1 18

Quintic polynomial

gix) =arv +bt*+c3+dr2+er+f 6 coefficients
Tt e [0, 1]

allows to satisfy 6 conditions, for example (in normalized time © = t/T)

d(0) = qo [|a(1) = q1| |9'(0) = voT ||la’(1) = v4T| |9"(0) = agT?||q"(1) = a;T?

q(t) = (1 - t)3[qg + (3gp+VeT) Tt + (9 T2+6v,T+12q,) t4/2]
+ 13 [Cll + (3q1 'VlT)(l"E) + (asz ‘6V1T+12q1) (1 - ’C)Z/Z]

special case: vo=vi=ay=a; =0

g(t) = qo + Aq[67° - 157% + 1073] AQ = Qqy - Qg

Robotics 1 19

Higher-order polynomials

= a suitable solution class for satisfying symmetric boundary
conditions (in a PTP motion) that impose zero values on
higher-order derivatives
= the interpolating polynomial is always of odd degree

= the coefficients of such (doubly normalized) polynomial are always
integers, alternate in sign, sum up to unity, and are zero for all
terms up to the power = (degree-1)/2

= in all other cases (e.qg., for interpolating a large number N of
points), their use is not recommended

= N-th order polynomials have N-1 maximum and minimum points
= oscillations arise out of the interpolation points (wandering)

Robotics 1 20

Numerical examples

interpolating polynomial of degree 9

Oth
degree |

'4 derivatives

0 . L . n
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Robotics 1

are zero

| 14 derivatives

are zero!

normalized

35

:first derivative °

25

(velocity -

15F

in time)

05F

0

-0.5

interpolating polynomial of degree 29

29th
degree

ﬂ no

| overshoot
nor

| wandering

4511

peaking
| at midpoint

0

0.1

0.2 0.3 0.4 0.5 0.6 0.7

0.8 0.9 1

21

4-3-4 polynomials

three phases (Lift off, Travel, Set down) in a pick-and-place operation in time

ek E——

dz

g.(t) = 4th order polynomial
gdt(t) = 3rd order polynomial

q gs(t) = 4th order polynomial
1 g D

Yo 14 coefficients
t0 tl tz tf

initial depart approach final

boundary conditions
Alto) = G0 q(tr) = at™) = 4 q(ty) = q(b*) = G q(tf)=qf} 6 passages

. . r " 4 initi I f I
A(to) = q(tr) =0 q(t) = a(ty) = 0 } veIocity/aézgllgré’éiQ)an
a) =aE) GE)=dk) =12 f 4 continuity

Robotics 1 22

Interpolation using splines

problem
interpolate N knots, with continuity up to the second derivative

solution

spline: N-1 cubic polynomials, concatenated so as to pass through N knots
and being continuous up to the second derivative at the N-2 internal knots

4(N-1) coefficients
4(N-1)-2 conditions, or
= 2(N-1) of passage (for each cubic, in the two knots at its ends)

= N-2 of continuity for first derivative (at the internal knots)
= N-2 of continuity for second derivative (at the internal knots)

2 free parameters are still left over
= can be used, e.g., to assign initial and final derivatives, v, and vy

presented next in terms of time t, but similar in terms of space A
= then: first derivative = velocity, second derivative = acceleration

Robotics 1 23

Building a cubic spline

q = 6(t) = {6k(t), t e [t t& + hi]} Onet

a(t) \ Ok+1 /‘—\/Y/Nv
V1 \q.k/ an
C|1'/\Clz/ -

t 55 t (] tn-1 tn
\)
Y

time intervals hy

O(t) =aptagttapt®+ast t€[0h]t=t-t (k=1,..,N-1)

continuity conditions - ék(hk) = ék+1(0)
for velocity and acceleration ‘o ‘"
R Ok (hy) = 0x+1(0)

Robotics 1 24

An efficient algorithm

1. if all velocities v, at internal knots were known, then each cubic in the spline
would be uniquely determined by

E_)k(o) = Jk = dko he he || ae | Gk~ Gk - Vichi @
0(0) = vk = ay 2h, 3hZ || as Vi1 = Vi
2. impose the continuity for accelerations (N-2 conditions)

0(h) = 2 a + 6 ag hy = 01,1(0) = 2 a1,

1. expressing the coefficients ay,, ays, ak+12 IN terms of the still unknown knot
velocities (see step 1.) yields a linear system of equations that is always (easily)

solvable ~ ~ [" ~ - ~
A(h) Vs | = | b(h,g,vy,vy)
- W)L J

t t f

tri-diagonal matrix unknown known vector

always invertible to be substituted then back in @)
Robotics 1 =

Robotics 1

/

2(hi+h;y)

hs

Structure of A(h)

hy

2(hy+hs) h,

hn 2(hn-st+hys)

hn-3

hnt 2(hnthyeg)

diagonally dominant matrix (for hy > 0)

[the same matrix for all joints]

_/

26

Robotics 1

Structure of b(h,q,vy,vy)

/
3 [h:?(as - d2) + hy2(dz - q1)] - hovy
h:h,

3
ﬁ3[h22(CI4 - g3) + h3?(qs3 - q)]

3
h-h [Nn-32(An-1 - On-2) + hno?(An-s - Anes)]
N-31IN-2

3

[Nn-22(An - An-1) + hn-12(An-1 - An-2)] - eV

_ 2Py

27

Properties of splines

= a spline (in space) is the solution with minimum curvature among all
interpolating functions having continuous second derivative

= for cyclic tasks (g; = qy), it is preferable to simply impose continuity of
first and second derivatives (i.e., velocity and acceleration in time) at
the first/last knot as “squaring” conditions

= choosing v; = vy = v (for a given v) doesn’t guarantee in general the
continuity up to the second derivative (in time, of the acceleration)

= in this way, the first = last knot will be handled as all other internal knots
= a spline is uniquely determined from the set of data qy,...,Qy,
hll ey hN-lI Vi, VN

= in time, the total motion occurs in T = 2 h, = ty-

= the time intervals hy can be chosen so as to minimize T (linear objective
function) under (nonlinear) bounds on velocity and acceleration in [0,T]

= in time, the spline construction can be suitably modified when the
acceleration is also assigned at the initial and final knots

Robotics 1 28

A modification
handling assigned initial and final accelerations

= two more parameters are needed in order to impose also the
initial acceleration oy and final acceleration oy

= two “fictitious knots” are inserted in the first and last original
intervals, increasing the number of cubic polynomials from N-1
to N+1

= in these two knots only continuity conditions on position,
velocity and acceleration are imposed

= two free parameters are left over (one in the first cubic and
the other in the last cubic), which are used to satisfy the
boundary conditions on acceleration

= depending on the (time) placement of the two additional knots,
the resulting spline changes

Robotics 1 29

A numerical example

= N = 4 knots (3 cubic polynomials)
= jointvaluesq;=0,q9,=2m, q3=1/2, 4=
« att;=0,t,=2,t;=3,t,=5 (thus, h;=2, hy,=1, hy= 2)
= boundary velocities vi = v4= 0
= 2 added knots to impose accelerations at both ends (5 cubic polynomials)

= boundary accelerations oy = a4 =0
= two placements: att;"=0.5and t,/=4.5(x), orty"=1.5and t,” = 3.5 ()

pos vel ' acc
30 C

[rad]
\
©
[rad/s]
(=)
T
|
lldd S -I

Robotics 1 30

