
Robotics 1 1

Robotics 1

Trajectory planning

Prof. Alessandro De Luca

Trajectory planner interfaces

external sensors

task planner* trajectory planner* control*

internal sensors

robot

environment
functional robot units

* = programming “points”

TRAJECTORY
PLANNER

robot action described
as a sequence of poses

or configurations
(with possible exchange

of contact forces)

reference profile/values
(continuous or discrete)
for the robot controller

Robotics 1 2

Trajectory definition
a standard procedure for industrial robots

1. define Cartesian pose points (position+orientation) using the teach-box
2. program an (average) velocity between these points, as a 0-100% of a

maximum system value (different for Cartesian- and joint-space motion)
3. linear interpolation in the joint space between points sampled from the

built trajectory

Robotics 1 3

examples of additional features
a) over-fly b) sensor-driven STOP c) circular path

through 3 points
A B

CD

. .
..

main drawbacks

n semi-manual programming (as in “first generation” robot languages)
n limited visualization of motion

a mathematical formalization of trajectories is useful/needed

Some typical trajectories
§ Point-to-point Cartesian motion with an intermediate point

Robotics 1 4

Straight lines as Cartesian path Interpolation with Bezier curves
video video

Some typical trajectories
§ Timing laws: Cartesian path with (dis-)continuous tangent

Robotics 1 5

Square path at constant speed Square path with
trapezoidal speed profile

video video

Joint and Cartesian trajectories
§ assigned task: arm reconfiguration between two inverse

kinematic solutions associated to a given end-effector pose

Robotics 1 6

for “simple” manipulators (e.g., all industrial robots) and m=n, the execution
of these tasks will require the passage through a singular configuration

§ initial and final configuration
§ same Cartesian pose (no change!):

the motion cannot be fully specified in
the Cartesian space

§ to perform this task, the robot should
leave the given end-effector pose and
then return to it

§ a self-motion could be sufficient
− if the robot starts in a singularity
− if there is (task) redundancy (m<n)

here n=m=6
(8 IK solutions)

Joint and Cartesian trajectories
§ a reconfiguration task (or… passing through singularity)

Robotics 1 7

three-phase trajectory:
circular path + self-motion + linear path

single-phase trajectory
in the joint space (no stops)

video video

From task to trajectory

TRAJECTORY
of motion pd(t)

of interaction Fd(t)=

GEOMETRIC PATH+

TIMING LAW

parameterized by s: p=p(s)
(e.g., s is the arc length)

describes the time evolution of s=s(t)

.
px(s)

p(s) = py(s)
pz(s)

A

B

0 T

0 smax

.
.

t

s

TIME

PARAMETER

PATH

example: TASK planner provides A, B
TRAJECTORY planner generates p(t)

p(s(t))

Robotics 1 8

Trajectory planning
operative sequence

n sequence of pose points (“knots”) in Cartesian space

n Cartesian geometric path (position + orientation): p = p(s)

n sequence of “knots” in joint space

n geometric path in joint space: q = q(l)

§ TASK planning

§ interpolation in Cartesian space

§ path sampling and kinematic inversion

§ interpolation in joint spacean
al

yt
ic

in
ve

rs
io

n

1

2

additional issues to be considered in the planning process
§ obstacle avoidance
§ on-line/off-line computational load
§ sequence 2 is more “dense” than 1

Robotics 1 9

Example

.
...........

..
..

.......

q1

q2

q3

l

q3(l)

...
.

.

.
.
.

.

CBA

.

.

.
p(s)

A. B.

C.

Cartesian space joint space

q2(l)

q1(l)

Robotics 1 10

Trajectory classification
n space of definition

n Cartesian, joint
n task type

n point-to-point (PTP), multiple points (knots), continuous,
concatenated

n path geometry
n rectilinear, polynomial, exponential, cycloid, …

n timing law
n bang-bang in acceleration, trapezoidal in velocity, polynomial, …

n coordinated or independent
n motion of all joints (or of all Cartesian components) start and

ends at the same instants (say, t=0 and t=T) = single timing law
or
n motions are timed independently (according to the requested

displacement and robot capabilities) – mostly only in joint space

Robotics 1 11

Path and timing law

n after choosing a path, the trajectory definition is completed by
the choice of a timing law

p = p(s) ⇒ s = s(t) (Cartesian space)
q = q(l) ⇒ l = l(t) (joint space)

n if s(t) = t, path parameterization is the natural one given by time
n the timing law

n is chosen based on task specifications (stop in a point, move at
constant velocity, and so on)

n may consider optimality criteria (min transfer time, min energy,…)
n constraints are imposed by actuator capabilities (max torque, max

velocity,…) and/or by the task (e.g., max acceleration on payload)

note: on parameterized paths, a space-time decomposition takes place
dp
ds

dp
ds

d2p
ds2p(t) = s p(t) = s + s2

.e.g., in Cartesian
space

Robotics 1 12

Cartesian vs. joint trajectory planning
n planning in Cartesian space

n allows a more direct visualization of the generated path
n obstacle avoidance, lack of “wandering”

n planning in joint space
n does not need on-line kinematic inversion

n issues in kinematic inversion
n q e q (or higher-order derivatives) may also be needed

n Cartesian task specifications involve the geometric path,
but also bounds on the associated timing law

n for redundant robots, choice among ¥n-m inverse solutions,
based on optimality criteria or additional auxiliary tasks

n off-line planning in advance is not always feasible
n e.g., when interaction with the environment occurs or

sensor-based motion is needed

. ..

Robotics 1 13

Relevant characteristics
n computational efficiency and memory space

n e.g., store only the coefficients of a polynomial function
n predictability and accuracy

n vs. “wandering” out of the knots
n vs. “overshoot” on final position

n flexibility
n allowing concatenation of primitive segments
n over-fly
n …

n continuity
n in space and/or in time
n at least !1, but also up to jerk = third derivative in time

Robotics 1 14

A robot trajectory with bounded jerk

Robotics 1 15

video

Trajectory planning in joint space
n q = q(t) in time or q = q(l) in space (then with l = l(t))
n it is sufficient to work component-wise (qi in vector q)
n an implicit definition of the trajectory, by solving a problem with

specified boundary conditions in a given class of functions
n typical classes: polynomials (cubic, quintic,…), (co)sinusoids,

clothoids, …
n imposed conditions

n passage through points = interpolation
n initial, final, intermediate velocity (or geometric tangent for paths)
n initial, final acceleration (or geometric curvature)
n continuity up to the k-th order time (or space) derivative: class Ck

many of the following methods and remarks can be
directly applied also to Cartesian trajectory planning (and vice versa)!

Robotics 1 16

Cubic polynomial in space

q(0) = q0 q(1) = q1 q’(0) = v0 q’(1) = v1

q(l) = q0 + Dq [al3 + bl2 + cl + d] Dq = q1 – q0

l Î [0,1]
“doubly normalized” polynomial qN(l)

qN(0) = 0 Û d = 0 qN(1) = 1 Û a + b + c = 1

4 conditions

4 coefficients

qN’(0) = dqN/dl|l=0 = c = v0/Dq

special case: v0 = v1 = 0 (zero tangent)

qN’(0) = 0 Û c = 0

qN(1) = 1 Û a + b = 1

qN’(1) = 0 Û 3a + 2b = 0
Û

a = -2
b = 3

qN’(1) = dqN/dl|l=1 = 3a + 2b + c = v1/Dq

Robotics 1 17

Cubic polynomial in time

q(0) = qin q(T) = qfin q(0) = vin q(T) = vfin
. .

q(t) = qin + Dq [a t3 + b t2 + c t + d] Dq = qfin - qin

t = t/T, t Î [0,1]
“doubly normalized” polynomial qN(t)

qN(0) = 0 Û d = 0 qN(1) = 1 Û a + b + c = 1

4 conditions

4 coefficients

qN’(0) = dqN/dt|t=0 = c = vinT/Dq

special case: vin = vfin = 0 (rest-to-rest)

qN’(0) = 0 Û c = 0

qN(1) = 1 Û a + b = 1

qN’(1) = 0 Û 3a + 2b = 0
Û

a = -2
b = 3

qN’(1) = dqN/dt|t=1 = 3a + 2b + c = vfinT/Dq

Robotics 1 18

Quintic polynomial

q(0) = q0 q(1) = q1 q’(0) = v0T q’(1) = v1T

q(t) = a t5 + b t4 + c t3 + d t2 + e t + f

Dq = q1 - q0

6 coefficients

special case: v0 = v1 = a0 = a1 = 0

allows to satisfy 6 conditions, for example (in normalized time t = t/T)

t Î [0, 1]

q’’(0) = a0T2 q’’(1) = a1T2

q(t) = (1 - t)3[q0 + (3q0+v0T) t + (a0T2+6v0T+12q0) t2/2]
+ t3 [q1 + (3q1 -v1T)(1- t) + (a1T2 -6v1T+12q1) (1 - t)2/2]

q(t) = q0 + Dq [6 t5 - 15 t4 + 10 t3]

Robotics 1 19

Higher-order polynomials

n a suitable solution class for satisfying symmetric boundary
conditions (in a PTP motion) that impose zero values on
higher-order derivatives

n the interpolating polynomial is always of odd degree
n the coefficients of such (doubly normalized) polynomial are always

integers, alternate in sign, sum up to unity, and are zero for all
terms up to the power = (degree-1)/2

n in all other cases (e.g., for interpolating a large number N of
points), their use is not recommended

n N-th order polynomials have N-1 maximum and minimum points
n oscillations arise out of the interpolation points (wandering)

Robotics 1 20

Numerical examples

9th
degree

29th
degree

normalized
first derivative

(velocity
in time)

14 derivatives
are zero!

4 derivatives
are zero

2.5 4.5!!

no
overshoot

nor
wandering

peaking
at midpoint

Robotics 1 21

4-3-4 polynomials
three phases (Lift off, Travel, Set down) in a pick-and-place operation in time

qL(t) = 4th order polynomial
qT(t) = 3rd order polynomial
qS(t) = 4th order polynomial

14 coefficients
. .

. .

t0 t1 t2 tf

q0

q1

q2

qf

initial depart approach final

q(t0) = q0 q(t1
-) = q(t1+) = q1 q(t2

-) = q(t2+) = q2 q(tf) = qf

boundary conditions

q(t0) = q(tf) = 0 q(t0) = q(tf) = 0
.

q(ti
-) = q(ti+) q(ti

-) = q(ti+) i = 1,2
.

6 passages

4 initial/final
velocity/acceleration

4 continuity

Robotics 1 22

Interpolation using splines
n problem

interpolate N knots, with continuity up to the second derivative
n solution

spline: N-1 cubic polynomials, concatenated so as to pass through N knots
and being continuous up to the second derivative at the N-2 internal knots

n 4(N-1) coefficients
n 4(N-1)-2 conditions, or

n 2(N-1) of passage (for each cubic, in the two knots at its ends)
n N-2 of continuity for first derivative (at the internal knots)
n N-2 of continuity for second derivative (at the internal knots)

n 2 free parameters are still left over
n can be used, e.g., to assign initial and final derivatives, v1 and vN

n presented next in terms of time t, but similar in terms of space l
n then: first derivative = velocity, second derivative = acceleration

Robotics 1 23

Building a cubic spline

q = q(t) = {qk(t), t Î [tk, tk + hk]}

. . . .
. .q(t)

q1 q2

qk

qk+1

qN-1

qN

vN

v1

t1 t2 tk tk+1 tN-1 tN

time intervals hk

qk(t) = ak0 + ak1 t + ak2 t2 + ak3 t3 t Î[0, hk], t = t - tk

continuity conditions

for velocity and acceleration

qk(hk) = qk+1(0)

qk(hk) = qk+1(0)

. .

.. .. k = 1, …, N-2

(k = 1, …, N-1)

Robotics 1 24

An efficient algorithm
1. if all velocities vk at internal knots were known, then each cubic in the spline

would be uniquely determined by

2. impose the continuity for accelerations (N-2 conditions)

1. expressing the coefficients ak2, ak3, ak+1,2 in terms of the still unknown knot
velocities (see step 1.) yields a linear system of equations that is always (easily)
solvable

v2
v3
:

vN-1

A(h) b(h,q,v1,vN)=

tri-diagonal matrix
always invertible

unknown known vector

qk(hk) = 2 ak2 + 6 ak3 hk = qk+1(0) = 2 ak+1,2

.. ..

1

to be substituted then back in 1
Robotics 1 25

qk(0) = qk = ak0

qk(0) = vk = ak1
. hk

2 hk
3

2hk 3hk
2

ak2

ak3

qk+1 - qk - vk hk

vk+1 - vk
=

Structure of A(h)

2(h1+h2) h1

hN-1 2(hN-2+hN-1)

h3 2(h2+h3) h2

hN-2 2(hN-3+hN-2) hN-3

...

diagonally dominant matrix (for hk > 0)
[the same matrix for all joints]

Robotics 1 26

Structure of b(h,q,v1,vN)

[h12(q3 - q2) + h22(q2 - q1)] - h2v1
3

h1h2

[h22(q4 - q3) + h32(q3 - q2)]
3

h2h3

[hN-32(qN-1 - qN-2) + hN-22(qN-2 - qN-3)]
3

hN-3hN-2

[hN-22(qN - qN-1) + hN-12(qN-1 - qN-2)] - hN-2vN
3

hN-2hN-1

…

Robotics 1 27

Properties of splines
n a spline (in space) is the solution with minimum curvature among all

interpolating functions having continuous second derivative
n for cyclic tasks (q1 = qN), it is preferable to simply impose continuity of

first and second derivatives (i.e., velocity and acceleration in time) at
the first/last knot as “squaring” conditions
n choosing v1 = vN = v (for a given v) doesn’t guarantee in general the

continuity up to the second derivative (in time, of the acceleration)
n in this way, the first = last knot will be handled as all other internal knots

n a spline is uniquely determined from the set of data q1,…,qN,
h1, …, hN-1, v1, vN

n in time, the total motion occurs in T = Sk hk = tN - t1

n the time intervals hk can be chosen so as to minimize T (linear objective
function) under (nonlinear) bounds on velocity and acceleration in [0,T]

n in time, the spline construction can be suitably modified when the
acceleration is also assigned at the initial and final knots

Robotics 1 28

A modification
handling assigned initial and final accelerations

n two more parameters are needed in order to impose also the
initial acceleration a1 and final acceleration aN

n two “fictitious knots” are inserted in the first and last original
intervals, increasing the number of cubic polynomials from N-1
to N+1

n in these two knots only continuity conditions on position,
velocity and acceleration are imposed
Þ two free parameters are left over (one in the first cubic and
the other in the last cubic), which are used to satisfy the
boundary conditions on acceleration

n depending on the (time) placement of the two additional knots,
the resulting spline changes

Robotics 1 29

A numerical example

n N = 4 knots (3 cubic polynomials)

n joint values q1 = 0, q2 = 2π, q3 = π/2, q4 = π
n at t1 = 0, t2 = 2, t3 = 3, t4 = 5 (thus, h1 = 2, h2 = 1, h3 = 2)

n boundary velocities v1 = v4 = 0

n 2 added knots to impose accelerations at both ends (5 cubic polynomials)

n boundary accelerations a1 = a4 = 0

n two placements: at t1’ = 0.5 and t4’ = 4.5 (�), or t1” = 1.5 and t4” = 3.5 (∗)

= placement’ = placement”

Robotics 1 30

�� ∗ ∗o

o

o

o

